EasyLiving

Creating a highly integrated computing experience

Steve Shafer et al.
Ubiquitous Computing group

EasyLiving Team

Steve Shafer

Barry Brumitt

Steve Harris

John Krumm

Brian Meyers

Greg Smith

http://research.microsoft.com/easyliving//easyliving

Beyond Mobile Computing

Desktop Computing

Beyond Mobile Computing

Beyond Mobile Computing

Geometry At Multiple Scales

City / Zip Code -- deliver pizza

EasyLiving Demo

Progress report as of today

How To Integrate

The EasyLiving System

Future ...

Elements of EasyLiving

UI and
Applications of
Computing in the
Physical World

Research in
Sensing and
World Modeling

Distributed
System
Architecture

Person Tracking in EasyLiving

Person Detection

Stereo processing with commercial software

Background subtraction and person detection

Reports sent to central person tracker about 7 Hz

color

patches

depth

people

Person Tracking

Process each new report from a sensor

- Timeouts for unsupported tracks
- Nearby tracks "repel"

Seat / Floor Mat Sensors

- Additional information for person-tracking
- Distinguish stand v. sit
- Less invasive than cameras

EasyLiving Person Tracking

Camera Calibration

Image	World
$(\mathbf{u}_1,\mathbf{v}_1)$	$(x_1,y_1,0)$
$(\mathbf{u}_2,\mathbf{v}_2)$	$(x_2,y_2,0)$
•••	•••

Image	World
$(\mathbf{u}_1,\mathbf{v}_1)$	$(x_1,y_1,0)$
$(\mathbf{u}_2,\mathbf{v}_2)$	$(x_2,y_2,0)$
•••	•••

Image	World
$(\mathbf{u}_1,\mathbf{v}_1)$	$(x_1,y_1,0)$
$(\mathbf{u}_2,\mathbf{v}_2)$	$(x_2,y_2,0)$
•••	•••

Active Badges (Future)

- Badges for person tracking:
 - > Larger area, less precision
 - > Fusion via generic person tracker

- → Ultrasound badges (AT&T) in lab use
- → Diffuse-IR system from Arial Systems
- Signal strength from Wireless LAN??
- Bluetooth beacons?

Keyboard Detection

Match color and approximate shape

World Model in EasyLiving

World Model

What is described?

- > Rooms and doorways
- > Computing devices
- > Other things in the world
- > People
 - > Where they are
 - > Who they are
 - > Their preferences
 - > What they are doing

The world model has many parts

Distributed Agent System

Agents represent services and things in the world:

- **♦ Properties** in a SQL Server database
- **♦ Executable process**

InConcert system provides services for agents:

- → XML Messaging
- → Invocation
- → Heartbeat

How Agents Find Each Other

Specific knowledge:

- Direct pointers from other agents
- Properties in lookup service

Searching in real time:

- Attribute matching
- Geometric indexing

The Geometric Model

Polygon objects and their relationships

Geometry in the Real World

map

Features:

- **Uncertainty representation**
- All measurements are relative

Using the Geometric Model

Queries

Geometric Model

Applications/UIs

Commands

Sensors

Physical World

Actuators

Room Control in EasyLiving

Turning On The Lights

- Flip a switch
- GUI dialog box
- Click on a GUI map
- "Turn on the light by the sofa"
- "Turn on <u>that</u> light"
- "I want to read a book"
- Make a funny gesture
- Walk into the room

Turning On The Lights – How?

- Flip a switch
- GUI dialog box
- Click on a GUI map
- "Turn on the light by the sofa"
- "Turn on that light"
- "I want to read a book"
- Make a funny gesture
- Walk into the room

- hardwired
- list (GM)
- -GM
- speech
- multimodal
- infer action
 - vision
- automatic

Device Control

EasyLiving Media Player

Automatic Behaviors

Example: Turn on the lights when you enter the room

 \bullet Condition \Rightarrow Action (program)

- Behaviors of the room
- Behaviors of the person

Automatic behaviors are part of the UI (Where do they come from?)

Authentication in EasyLiving

Authenticated or Not?

- When you walk into the room, you are an unknown person
 - Limited privileges: Room controls, Web browsing
 - > Toolbar appears on the screen

- You can authenticate to become known as a specific individual
 - Greater privileges desktop
 - > Personal data available playlist

Authentication in EasyLiving

Geometry provides the link

Personal Desktop

where she goes

Click the "Desktop" Desktop Display button in the toolbar Manager Proxy Needs info to pass to T.S. Client Owner = Person 23 T.S. Client Person 23 ID = Wilma T.S. Server Wilma gets her own Wilma Wilma's desktop no matter Desktop = ... Desktop

Future Directions for EasyLiving

Vision for Interaction

Pointing at things: "Put my desktop on *that* display"

Device does not need to be a real object

eso F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

1 1 2 3 4 5 6 7 8 9 0 - = bksp

tab q w e r t y u i o p [] \
lock a s d f g h j k l ; ent

shft z x c v b n m , . / shft

ctrl 4 alt

Paper keyboard

Paper as mouse

World Model Building

Build geometric model using drawing program

Use cameras to help build model

Geometric Path Planner

(Not yet integrated with geometric model)

"Sidewalk Warrior"

- Novel low-power devices (Turner W.)
 - Watch w/ display
 - Pen w/ accelerometers
- Communicate via BodyNet
- PocketPC as integrator:
 - Pocket EasyLiving
 - Proxies for novel devices
 - Wireless LAN
- Automatic integration with room

Contact Anyone Anywhere

